

PATIENTS. AT THE HE V RT OF ALL WE DO.

Ong SC, Lee VTW, Chow WL, Lim J, Tong SC, Kee TYS, Madhavan K

Analyst SingHealth Centre for Health Services Research Is simultaneous pancreas kidney transplant the most cost-effective treatment for Type 1 diabetes patients with renal failure? A cost-utility analysis

Partners in Academic Medicine

Members of the SingHealth Group

National Neuroscience Institute

Singapore National Eye Centre

Contents

Introduction

Methods

Model structure and assumptions

Probabilities

•Outcomes and cost analysis

Cost-utility analysis

Sensitivity analysis

Results

Conclusions

Introduction

Introduction

≻Pancreas transplant for type I diabetes mellitus:

✓ improve quality of life ¹⁻³,

✓ cost-effective⁴,

✓ prolong survival⁵

✓ induce an insulin-independent normoglycemic state⁶

>Most widely applied in Type 1 diabetes with renal failure (IDDM-RF)

✓ simultaneous pancreas kidney transplant (SPK).

1. Milde FK, Hart LK, Zehr PS. Diabetes Care. 1995 Jan;18(1):93-5.

2. Kiebert GM, van Oosterhout EC, van Bronswijk H, Lemkes HH, Gooszen HG. Clin Transplant. 1994 Jun;8(3 Pt 1):239-45.

- 3. Ziaja J, Bozek-Pajak D, Kowalik A, Krol R, Cierpka L. Transplant Proc. 2009 Oct;41(8):3156-8.
- 4. Kiberd BA, Larson T. Transplantation. 2000 Oct 15;70(7):1121-7.

5. Smets YF, Westendorp RG, van der Pijl JW, de Charro FT, Ringers J, de Fijter JW, et al. 1999 Jun 5;353(9168):1915-9.

6. Sutherland DE, Gruessner RW, Gruessner AC. World J Surg. 2001 Apr;25(4):487-96.

Introduction

Established & available in US & European centres

→ not available in Singapore

Singapore has a national liver and kidney transplant programme
 SPK is the next natural progression

➢Overseas studies¹⁻² had proven that SPK is a cost-effective strategy➢no analysis done in the region.

Kiberd BA, Larson T. Transplantation. 2000 Oct 15;70(7):1121-7.
 Douzdjian V, Ferrara D, Silvestri G. Am J Kidney Dis. 1998 May;31(5):794-802

to assess cost-effectiveness of SPK compared with other treatment strategies for IDDM-RF prior to establishment of a pancreas transplant programme in Singapore.

Patients. At the Heart of All We Do.

Model structure and assumptions

>A decision analysis model was used.

➤Treatment strategies for IDDM-RF:

✓ Cadaveric kidney transplant (Ktx-CAD),

- ✓ Living donor kidney transplant (Ktx-LD),
- ✓ Simultaneous pancreas kidney transplant (SPK),✓ Dialysis.

≻Assumptions:

 \checkmark all options are available to patients,

 ✓ transplantations are performed and managed according to standard techniques and immunosuppressive regimens.

≻The time horizon: 5 years

≻Perspective: healthcare provider.

Analyzed using TreeAge Pro software

Probabilities

>All patients and graft survival probabilities- - 5-year survival analyses

Exception: "Dies from operation or complication" --survival probability of 1 year.

≻All survival values -- Singapore Renal Registry data

➢ Exception: All SPK survival variables

 American data from the United Network for Organ Sharing and Scientific Registry of Transplant Recipients (OPTN/SRTR)

✓ no local data available

Health Outcomes

≻Outcomes: Quality adjusted life year (QALY).

QALY: a measure of disease burden, including both the quality and the quality of life lived.

QALY for each treatment option were obtained from a overseas study*
 Standard Gamble method
 based on a 5-year model

*Douzdjian V, Ferrara D, Silvestri G. Am J Kidney Dis. 1998 May;31(5):794-802.

Cost analysis

>Only direct medical costs were considered in this study.

➤Adjusted to 2010 values

>health care component of the Singapore Consumer Price Index.

We adopted a 3% annual discount rate for all future costs
which converted values that would occur in the future to their present values.

≻All cost components were based on the actual patients' data locally.

Exception: All SPK related costs were based on expert opinion of a local surgical team

✓ 1st year SPK transplant cost--40%✓ annual follow-up cost--15%

higher than the cadaveric kidney transplant

Cost-utility analysis

Cost-effectiveness: Cost-utility ratio (CUR, i.e., Cost per QALY gained)

Incremental cost-utility ratio (ICUR) was also calculated versus the least

costly strategy.

ICUR _{A vs. B} = Cost A – Cost B QALY gained for A – QALY gained for B

≻WHO guidelines:

- ✓ ICUR below 1 GDP per capita highly cost-effective
- ✓ < 3 times GDP per capita **cost-effective**

*GDP per capita for Singapore 2010= SGD59,813 (USD48,382)

Sensitivity analysis

Sensitivity analyses were performed to evaluate the impact of uncertainties around key variables.

➤Survival variables

variations: 95% CI (Singapore Renal Registry)

➢SPK survival variables,

Variations: ±15% of the baseline values (the OPTN data)

higher level of uncertainty as no local data available.

Sensitivity analysis

➤Cost variables

•Variations: \pm 20% of baseline values.

≻QALY:

•Variations: \pm 1 Standard deviation

Previous study*

*Douzdjian V, Ferrara D, Silvestri G. Am J Kidney Dis. 1998 May;31(5):794-802.

Baseline analysis

Treatment option	Cost, SGD	QALY	Cost-utility ratio, SGD	ICUR (vs dialysis), SGD
Dialysis	116,777	0.68	171,227	NA
Cadaveric kidney transplant, Ktx-CAD	192,602	2.21	87,203	Dominated
Living donor kidney transplant, KD-LD	201,900	2.78	72,702	40,630
Simultaneous pancreas kidney transplant, SPK	251,099	3.21	78,335	53,091

1 USD = SGD1.24

Figure 1: Cost-utility analysis for IDDM-RF treatment strategies

Baseline analysis

1 USD = SGD1.24

Treatment option	Cost, SGD	QALY	Cost-utility ratio, SGD	ICUR (vs dialysis), SGD		
Dialysis	116,777	0.68	171,227	NA		
Cadaveric kidney transplant, Ktx-CAD)	192,602	2.21	87,203	Dominated		
Living donor kidney transplant, KD-LD	highly	40,630				
Simultaneous pancreas kidney transplant, SPK						

*GDP per capita for Singapore 2010= SGD59,813 (USD48,382)

Patients. At the Heart of All We Do.

Sensitivity Analysis on QALY (dialysis free, insulin dependent state)

QALY for the dialysis-free, insulin dependent state falls < 2.7
 vs 3.0 used in the baseline

1st year SPK transplant cost is only 20% higher than the KA-CAD cost
 vs 40% higher than the Ktx-CAD used in the baseline

Conclusions

Conclusions

Both Ktx-LD and SPK are highly cost-effective strategies in the treatment of IDDM-RF.

Ktx-LD is the most cost-effective strategy in the baseline analysis.

SPK is potentially the most cost-effective strategy in the sensitivity analyses :

✓10% increase in SPK kidney graft survival

✓12% increase in SPK patient survival

✓QALY for the dialysis-free, insulin dependent state falls <10 %

Reasonable within the sensitivity analyses ranges and achievable

Thank you

For more information on SingHealth, please visit www.singhealth.com.sg

PATIENTS. AT THE HE RT OF ALL WE DO.

This presentation contains information which is confidential and/or legally privileged. No part of this presentation may be disseminated, distributed, copied, reproduced or relied upon without the expressed authorisation of SingHealth.